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a b s t r a c t

There is an intense, worldwide effort to develop durable lithium ion batteries with high energy and power
densities for a wide range of applications, including electric and hybrid electric vehicles. One of the critical
challenges in advancing lithium ion battery technologies is fracture and decrepitation of the electrodes as
a result of lithium diffusion during charging and discharging operations. When lithium is inserted in either
the positive or negative electrode, a large volume change on the order of a few to several hundred percent,
can occur. Diffusion-induced stresses (DISs) can therefore cause the nucleation and growth of cracks,
leading to mechanical degradation of the active electrode materials. Our work is aimed at developing
a mathematical model relating surface energy with diffusion-induced stresses in nanowire electrodes.
With decreasing size of the electrode, the ratio of surface area to volume increases. Thus, surface energy
and surface stress can play an important role in mitigating DISs in nanostructured electrodes. In this
work, we establish relationships between the surface energy, surface stress, and the magnitude of DISs in
nanowires. We find that DISs, especially the tensile stresses, can decrease significantly due to the surface

effects. Our model also establishes a relationship between stress and the nanowire radius. We show that,
with decreasing size, the electrode material will be less prone to mechanical degradation, leading to
an increase in the life of lithium ion batteries, provided other phenomena are unaffected by increased
surface area (e.g., chemical degradation reactions). Also we show that, in the case of nanostructures,
surface strain energy is significant in magnitude comparing with bulk strain energy. A mathematical tool
to calculate total strain energy is developed that can be used to compare strain energy with the fracture

elec
energy of that material in

. Introduction

Lithium diffusion within host electrodes of lithium ion batter-
es leads to ‘Diffusion-Induced Stresses’ (DISs), which stimulate

echanical degradation of the electrodes, i.e., pulverization, capac-
ty fading, and decrease in battery performance. Recently, Chan et
l. [1], showed that silicon nanowires can accommodate large strain
ithout pulverization. Due to low discharge potential (relative to a

ithium reference) and identified high theoretical charge capacity
4200 mAh g−1) [2], silicon nanowires are of interest for lithium ion
attery applications. Several research groups have reported on the
se of nanotubes and nanowires of different materials as electrodes

n lithium ion batteries. Chen et al. [3] have recently shown that

uO nanowires have high reversible capacity. Earlier, Chan and co-
orkers [4] proposed that Ge nanowires can be used to construct
high capacity Li ion battery. With decreasing size of the active

lectrode element the surface area to volume ratio increases; as
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has been recognized in many publications. When the character-
istics dimension of a particle falls below tens of nanometers, the
number of atoms on the surface of the particle exceeds those of
the bulk [5], and unusual particle properties often result relative
to the bulk material, which has given rise to the term nanotech-
nology in more recent times. Cuenot et al. [6] have clarified the
influence of nanowire radius on mechanical properties including
the apparent stiffness and tensile modulus. Hence, for nanoscale
electrode structures, surface energies, and surface stresses can be
expected to have a significant impact on the mechanical properties
of electrode materials.

A substantial body of literature is devoted to the mod-
eling of lithium ion batteries using volume-averaged (macro-
homogeneous) methods to characterize simultaneously the liquid
and solid phase phenomena [7–14]. Prussin [15] made an anal-
ogy between thermal stress and DIS and analyzed the transverse
stresses developed in a thin plate during mass transfer. Lee and

co-workers [16–18] also studied DIS in various systems includ-
ing thin plates, hollow cylinders, and composites. Garcia et al.
[19] developed a numerical framework which describes the spa-
tial distribution of electrochemical fields and stress distribution
in porous-electrode microstructures. Christensen and Newman
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Nomenclature

List of symbols
r, �, z cylindrical coordinates
� surface energy per unit area (J m−2)
ı˛ˇ Kroneker delta function
�surf

˛ˇ
surface stress (N m−1)

� and � Lamé constants for isotropic bulk material (N m−2)
�s and �s surface Lamé constants(N m−1)
�˛ˇ curvature tensor of the surface (m−1)
�0 residual surface tension under unrestrained condi-

tions (N m)
n˛ normal vector
εij infinitesimal strain tensor
˝ partial molar volume of the solute (mol m−3)
R radius of the cylindrical electrode (m)

 Poisson’s ratio
E Young’s modulus (N m−2)
u radial displacement (m)
�r radial stress (N m−2)
�� tangential stress (N m−2)
�z axial stress (N m−2)
εrr radial strain
ε�� tangential strain
εzz axial strain
C(r,t) solute concentration at radius r at time t (mol m−3)
Cavg(r) average concentration in the area of radius r

(mol m−3)
Cavg(R) average concentration in the area of radius R

(mol m−3)
D diffusion coefficient of the solute (m2 s−1)
t time (s)
x dimensionless radius
T dimensionless time
y dimensionless concentration
J0 and J1 Bessel’s function of first kind of order 0 and 1 respec-

tively
�r dimensionless radial stress
�� dimensionless tangential stress
�z dimensionless axial stress
ETotal total elastic energy per unit length stored in the

cylinder of radius R and height h (J m−1)
Ebulk strain energy per unit length stored due to bulk

deformation (J m−1)
Esurface strain energy per unit length stored due to surface

deformation (J m−1)
−3

[
s
g
l
a
f
p

e
n
s
w
s
t

εrr − C = (�r − 
(� + �z)) (4)
e(r) strain energy density (J m )∏
bulk dimensionless bulk strain energy∏
surface dimensionless surface strain energy

20,21] and Zhang et al. [22,23] simulated intercalation induced
tresses within single particles to capture salient features of the
overning electrochemistry and solid mechanics taking place in
ithium ion batteries. At the nanoscale, surface effects mentioned
bove are prominent, which has prompted the inclusion of sur-
ace mechanics in within the analysis of DIS of spherical electrode
articles [24].

In this paper, we couple DISs and surface stresses so as to
lucidate their combined effects on the mechanical behavior of

anowire electrodes; our approach is similar to that employed for
pherical particles [24]. This paper provides a mathematical frame-
ork for the investigation of nanowire electrodes. In addition to

tress effects surface strain energy also becomes significant relative
o that of the bulk at the nanoscale. Strain energy is an important
Sources 195 (2010) 5081–5088

criterion that can be used to determine the mechanical stability of
an electrode material. Cheng and Verbrugge [25] analyzed strain
energy for spherical particles without considering the effects of
surface energy. In this work, we perform a complete strain energy
analysis showing that surface strain energy provides a significant
contribution in total strain energy for nanowires. Furthermore, the
total strain energy can be compared with the fracture energy to
derive a condition for crack propagation in electrode materials; the
ensuing analysis and approach is new to modeling DIS of nanoscale
systems and provides a general framework for the investigation
of other nanoscale geometries. The specific results of this analy-
sis should prove helpful in guiding the selection of materials for
nanowire electrodes.

2. Stress modeling

The surface stress of a material is related to the surface energy
and the strain tensor of a particular geometry of the material. This
can be expressed with Gibb’s equation [26]:

�surf
˛ˇ = �ı˛ˇ + ∂�

∂ε˛ˇ
(1)

where � is surface energy per unit area, ε˛ˇ (1) is a 2 × 2 surface
strain tensor, and ı˛ˇ is the Kronecker delta function. For liquids,
surface stress and � have the same value because of the high mobil-
ity of atoms in fluids. For solids, surface stress and surface energy
are not the same because of the finite elasticity of solid surfaces.
Under the assumption that the surface adheres to the bulk without
slipping, and in the absence of body forces, the equilibrium and con-
stitutive equations for isotropic case can be summarized as follows
[26]. In the bulk:

�bulk
ij,j

= 0

�bulk
ij

= Cijklεkl = [�ıijıkl + �(ıikıjl + ıilıjk)]εkl
(2a)

On the surface (or interface):

�bulk
ˇ˛

nˇ + �surface
ˇ˛,ˇ

= 0 �bulk
ij

njni = �surface
˛ˇ

�˛ˇ

�surface
˛ˇ

= �0ıˇ˛ + 2(�s − �0)ıˇ� ε�˛

+(�s + �0)ε�� ıˇ˛

(2b)

where � and � are the Lamé constants for the isotropic bulk
material. The surface/interface can be characterized by surface
Lamé constants �s and �s, which give deformation dependent sur-
face energy. Other symbols denote the following [26]; �˛ˇ is the
curvature tensor of the surface/interface, �0 is residual surface
tension under unrestrained conditions, n˛ is normal vector to sur-
face/interface, and εij is infinitesimal strain tensor. It is noted that
only certain strain components appear within the constitutive law
for surfaces due to the 2 × 2 nature of the surface stress tensor (i.e.,
strains normal to the surface are excluded). The Greek indices take
on values 1 and 2 while Latin subscripts adopt values 1 through 3.
Conventional summation rules apply unless otherwise noted.

For cylindrical structure, i.e., nanowires, we can rewrite this
equation as follows:

�� = ��� = �0 + (2�s + �s − �0)ε�� = �0 + Ksε�� (3)

The bulk of the nanowire will be assumed to be an isotropic, linearly
elastic solid. Using the analogy between thermal stresses [27,28]
and DISs, we can write,

˝ 1

3 E �

Similarly,

ε�� − ˝

3
C = 1

E
(�� − 
(�r + �z)) (5)
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here E is the Young’s modulus, C is the molar concentration, and
is the partial molar volume of the solute. Depending upon the

xial stress conditions, the axial strain can have three possibilities.

i. If the electrode is a long wire, the strain in the z-direction may
be negligible. This is the plane strain condition, i.e., εzz = 0.

ii. If nanowires are free at the ends, Fz =
∫ R

0
2
r�zdr = 0. This is

the generalized plane strain condition.
ii. If there is no axial stress present, �z = 0. This is the plane stress

condition.

We further assume that the physicochemical properties associ-
ted with the linear elastic solid are independent of concentration.

In practice, nanowires electrodes are long wires grown on a sub-
trate and thus one of the ends of the wire is always attached to
he substrate. The other end is free to expand. Changes in stress
ondition at the fixed end have effect on the stress distribution
ear that end. But according to Saint-Venant’s principle [28], the
ffects on stress due by the fixed end are expected to diminish
ith distance from the fixed end. Since the other end is free to

xpand, we can assume that long nanowires with a fixed end
re under the generalized plane strain condition (i.e., condition
i).

Since atomic diffusion in solids is a much slower process than
lastic deformation, mechanical equilibrium is established much
aster than that of diffusion. Mechanical equilibrium is, therefore,
reated as a static equilibrium problem [24]. In the absence of any
ody force, the equation for static mechanical equilibrium in the
ulk of a cylinder is

d�r

dr
+ �r − ��

r
= 0 (6)

or infinitesimally small deformation, the radial and tangential
train of cylindrical particle can be related to radial displacement
, by the relation:

rr = du

dr
, ε�� = u

r
(7)

here is no displacement at the center, and u(0) = 0. Furthermore,
he radial stress �r must satisfy mechanical equilibrium at the sur-
ace r = R (where, R is the radius of the cylinder) [26]:

r |r=R = −�surface
�

R
(8)

sing these conditions, Eqs. (3)–(8), and no further assumptions,
e can express the stress components as follows:

r = ˝

3
E∗
[

1
2

{
1 − ((2�s + �s − �0)/ER) (1 + 
)

1 + ((2�s + �s − �0)/ER) 
∗

}
Cavg(R) − 1

2
Cavg(

� = ˝

3
E∗
[

1
2

{
1 − ((2�s + �s − �0)/ER) (1 + 
)

1 + ((2�s + �s − �0)/ER) 
∗

}
Cavg(R) + 1

2
Cavg(

z = j

[
˝

3
E∗
[{

q∗ + 

1 − ((2�s + �s − �0)/ER) (1 + 
)

1 + ((2�s + �s − �0)/ER) 
∗

}
Cavg(R) − C

here Cavg(r) = (2/r2)
∫ r

0
C(r′)r′dr′ is the average concentration

nside a cylinder of unit length and radius r. Here,

i. For the plane strain condition:

∗ E ∗ ∗
E =
1 − 


, 
 = (1 − 2
)(1 + 
), q = 0, j = 1 (12)

ii. For the generalized plane strain condition:

E∗ = E

1 − 

, 
∗ = (1 − 2
)(1 + 
), q∗ = (1 − 
), j = 1 (13)
Sources 195 (2010) 5081–5088 5083

[
�0/R

1 + ((2�s + �s − �0)/ER) 
∗

]
(9)

(r)

]
−
[

�0/R

1 + ((2�s + �s − �0)/ER) 
∗

]
(10)

− 2�

[
�0/R

1 + ((2�s + �s − �0)/ER) 
∗

]]
(11)

iii. For the plane stress condition:

E∗ = E, 
∗ = (1 − 
), q∗ = (1 − 
), j = 0 (14)

The stress components contain surface energy and surface ten-
sion terms, and the following definitions are used to streamline
notation:

S1 =
[

1 − ((2�s + �s − �0)/ER) (1 + 
)
1 + ((2�s + �s − �0)/ER) 
∗

]
,

S2 = −
[

�0/R

1 + ((2�s + �s − �0)/ER) 
∗

] (15)

Note that the quantities �s, �s and �0 multiply onto Cavg(R), which
is a time-dependent quantity. The term S2 has dimensions of stress
and the negative sign ensures that it’s always compressive rela-
tive to the radial, tangential, or axial stress. The radius R in the
denominator makes clear that as the size of the electrode particle
is reduced, S2 will have a greater effect on the principal stresses.
Thus, in nanoscale structures, surface tension can be expected to
play an important role in affecting DISs.

Lithium ions diffuse in or out of the electrode during charging or
discharging. For dilute solutes within the cylindrical host material,
the solute (lithium ion) concentration is governed by the diffusion
equation:

∂C

∂t
= D

(
∂2C

∂r2
+ 1

r

∂C

∂r

)
(16)

There are two possible ways of operating a battery:

a. Potentiostatic operation: the electrode is surrounded by a con-
stant lithium ion concentration.

b. Galvanostatic operation: the current, thus the ionic flux at the
surface of the electrode, is a constant.

Here, we assume that the electrode surface is surrounded by
an invariant lithium ion concentration CR (reflecting facile elec-
trochemical kinetics and a porous-electrode system dominated
by solute-diffusion resistance [24,25]). The case of galvanostatic
charging is discussed in details in the ‘supplementary information’
section. We assume the initial lithium ion concentration inside the
electrode is C0. In addition, the concentration at the center is finite.
The initial and boundary conditions are, therefore,

C(r, 0) = C0, for 0 ≤ r ≤ R

C(R, t) = CR, for t ≥ 0
C(0, t) = finite, for t ≥ 0

Eq. (16) can be made dimensionless with the following:

x = r

R
, T = Dt

R2
, y = C − C0

CR − C0
(17)
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ence,

∂y

∂T
=
(

∂2y

∂x2
+ 1

x

∂y

∂x

)
(18)

he initial and boundary conditions can be rewritten in the dimen-
ionless form as follows:

(x, 0) = 0, for 0 ≤ x ≤ 1

(1, T) = 1, for T ≥ 0

(0, T) = finite, for T ≥ 0 (19)

he analytic solution of this problem is well known and is repro-
uced here [27,29]:

(x, T) = 1–2
∑∞

n=1

{
e−�2

nT J0(�nx)
�nJ1(�n)

}
(20)

here J0 and J1 are the Bessel functions of the first kind of order 0
nd 1 respectively, and �n are the n solutions of equation J0(�n) = 0.
he average concentrations can be written as follows:

avg(x) = Cavg(r) − C0

CR − C0
=
(

1 − 4
x

∑∞

n=1

{
e−�2

nT J1(�nx)

�2
nJ1(�n)

})
(21)

avg(1) = Cavg(R) − C0

CR − C0
=
(

1 − 4
∑∞

n=1

{
e−�2

nT

�2
n

})
(22)

e can now recast the stress components in dimensionless form:

r = �r

[(˝/3) (E/(1 − 
))(CR − C0)]

=
[

1
2


̄

[
(S1 − 1)

(
C0

C0 − CR

)
+ S1

(
1 − 4

∞∑
n=1

{
e−�2

nT

�2
n

})

−
(

1 − 4
x

∞∑
n=1

{
e−�2

nT J1(�nx)

�2
nJ1(�n)

})]

+ S2

[(˝/3) (E/(1 − 
)) (CR − C0)]

]
(23)

� = ��

[(˝/3) (E/(1 − 
)) (CR − C0)]

=
[

1
2


̄

[
(S1 − 1)

(
C0

C0 − CR

)
+ S1

(
1 − 4

∞∑
n=1

{
e−�2

nT

�2
n

})

+
(

1 − 4
x

∞∑
n=1

{
e−�2

nT J1(�nx)

�2
nJ1(�n)

})]

−
̄

(
1 − 2

∞∑
n=1

{
e−�2

nT J0(�nx)
�nJ1(�n)

})

+ S2

[(˝/3) (E/(1 − 
)) (CR − C0)]

]
(24)

z = �z[
(˝/3) (E/(1 − 
)) (C − C )

]

R 0

= j

[[
(q∗+
S1−1)

(
C0

C0−CR

)
+[q∗+
S1]

(
1−4

∞∑
n=1

{
e−�2

nT

�2
n

})
Fig. 1. Lithium ion concentration (Eq. (20)) inside an electrode at different radial
locations and times for insertion condition.

−
(

1 − 2
∞∑

n=1

{
e−�2

nT J0(�nx)
�nJ1(�n)

})]

+ 2�
S2[

(˝/3) (E/(1 − 
)) (CR − C0)
]
]

(25)

For the plane strain condition, 
̄ = 1; for the generalized plane
strain condition, 
̄ = 1; and for the plane stress condition, 
̄ = (1 −

). The quantities �r, �z, and �� represent dimensionless stresses in
r, z, and �-directions, respectively. On charge, lithium ions will be
inserted into the negative electrode and extracted from the positive
electrode; the opposite hold true for discharge.

We can plot dimensionless concentration at different radial
positions and time using Eq. (20) as depicted in Fig. 1. First, we
consider a case of an electrode with a large diameter. There will be
neither surface tension nor surface energy effects on the stresses.
In this case, S1 = 1 and S2 = 0. We plot dimensionless radial and tan-
gential stresses. We find that radial stresses (solid lines, Fig. 2), in
both plane strain and generalized plane stress conditions are sim-
ilar. Similarly, tangential stresses (solid lines, Fig. 3), in these two
conditions are identical. We assume that the initial concentration of
solute (lithium ion) inside the electrode is C0 = 0. Similarly, we plot
radial and tangential stress for plane stress condition for a large
diameter electrode. In all the three cases, the radial stress at the
center initially increases, reaches a maximum when T = Dt/R2 =
0.076, and then decreases gradually until the electrode reaches sat-
uration concentration. The radial stress is always tensile if there
are no surface effects. The tangential stress is tensile at the cen-
ter and compresssive at the surface. The magnitude of radial and
tangential stress are the same at the center. The tangential stress
maxima occures at the surface at time zero. At time zero and r = R,
Cavg(R) = Cavg(r) ∼= 0, and C(r) = CR. From Eqs. (10) and (13), for the
plane strain and generalized plane strain condition:

��

[(˝/3)(E/(1 − 
))CR]
|max ∼= −
̄ + S2

[(˝/3) (E/(1 − 
)) CR]
(26)

Here, 
̄ value is same as mentioned in Eq. (25) depending upon axial
loading condition. Eq. (26) gives the maximum tangential stress
that the electrode material will be subjected to. The maximum tan-
gential stress will vary depending upon value of S2 and the axial
loading condition. It can be used as an important parameter to

design an electrode material.

In the absense of surface effects (S1 = 1 and S2 = 0), the equa-
tion system is symmetric, and mirror opposite conclusions hold for
the case of deinsertion (i.e., replacing tensile stress by compres-
sive stress). This stress distribution is independent of the particle
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Fig. 2. Radial stress (Eq. (23)) inside an electrode at different radial locations at
different time. This is for generalized plane strain condition. Solid lines represents
s
D
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w
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s
c

F
T
e
r
(

Fig. 4. Radial stress inside an electrode at different radial locations and times. Solid
lines represent plane stress condition. Dashed lines represent generalized plane
strain condition. No surface effects are considered.
tresses in large electrode i.e., no surface effects are considered (S1 = 1 and S2 = 0).

ashed lines represent stresses in 5 nm diameter nanowire electrodes i.e., surface
ffect is significant (S1 = 0.9855 and (S2/[(˝/3) (E/(1 − 
)) CR]) = 0.0174).

adius; with proper time and radius scaling, the stress distribution
s idential for all particle radii.

We see, from Figs. 4–6, that all three stresses are dependant on
he axial loading condition of the electrode. Furthermore, the radial
nd tangential stresses for plane strain and generalized plane strain
ondition are exactly the same. In contrast, the axial stresses are
ignificantly different in the two cases. The plane stress condition
eads to different radial and tangential stresses than plane strain
onditions (see Figs. 4 and 5).

We now consider the influence of small electrode diameters and
urface effects on stress distribution. For evaluating the surface
ffects, the parameters values of Ref. [24] are employed directly,
aking it straightforward to compare spherical and cylindrical

lectrodes. Specifically, E = 10 GPa, 
 = 0.3, and (�/3)CR = 0.08. We
ake surface tension value as 1 J m−2 and (2 �s + �s) is 5 N m−1,
hich is of same order of magnitude as surface modulus val-

es of Al and Si [28]. With these values, we get S1 = 0.9855 and
S2/[(˝/3)(E/(1 − 
)) CR]) = 0.0174. The plots obtained of dimen-
ionless radial and tangential stress vs. radial distance for a 5 nm
ylindrical wire are shown in Figs. 2 and 3 (dashed lines). These

ig. 3. Tangential stress (Eq. (24)) inside an electrode at radial locations and times.
his is for generalized plane strain condition. Solid lines represents stresses in large
lectrode i.e., no surface effects are considered (S1 = 1 and S2 = 0). Dashed lines rep-
esent stresses in 5 nm diameter nanowire electrodes i.e., surface effect is significant
S1 = 0.9855 and (S2/[(˝/3)(E/(1 − 
)) CR]) = 0.0174).

Fig. 5. Tangential stress (Eq. (24)) inside an electrode at different radial locations
and times. Solid lines represent plane stress condition. Dashed lines represent gen-
eralized plane strain condition. No surface effects are considered.

Fig. 6. Axial stress (Eq. (25)) inside an electrode at radial locations and times. Solid
lines represent plane strain condition. Dashed lines represent generalized plane
strain condition. No surface effects are considered.
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of the increase in radius can be expressed as follows:
ig. 7. Radial stress at a dimensionless time T = 0.076 for electrodes with different
iameters. The results are for plane strain and generalized plane strain conditions.

re for plane strain conditions in axial direction. Similar plots can
e obtained for the other two axial boundary conditions. In both
he Figs. 2 and 3, by comparing solid lines and dashes lines, it can
e observed that at the nanoscale, there is a significant decrease in
oth radial and tensile stresses.

We plot radial and tangential stress at time T = 0.076 for cylindri-
al electrodes of different diameters in Figs. 7 and 8, respectively.
or insertion, the maximum tangential stress is always compressive
nd its magnitude is increased as the particle radius is decreased.
t can be observed that, as radius decreases, the effect of surface
ension becomes much more significant. These results make it
lear that when the influence of surface tension is incorporated,
maller (nanoscale) wires see a more compressive stress environ-
ent, which would decrease the probability of crack formation due

o tensile stress.

. Strain energy

Due to deformation, elastic strain energy is stored in the elec-
rode. This energy is a driving force for crack propagation in the
lectrode. Ref. [25] overviews a strain energy analysis for spherical
articles. For nanoscale particles, the surface strain energy also has
significant contribution to total energy. The total strain energy for

he particle can be expressed as follows:
total = Ebulk + Esurface (27)

rom the stresses, we can calculate the bulk strain energy per unit
olume or bulk strain energy density e(r) accumulated as a result
f the elastic deformation for the isotropically deformed cylinder

Fig. 9. A schematic illustration of c
Fig. 8. Tangential stress at dimensionless time T = 0.076 for electrodes with different
diameters. The results are for plane strain and generalized plane strain conditions.

as follows [28]:

e(r) = 1
2E

(�2
r + �2

� + �2
z ) − 


E
(�r�� + ���z + �z�r) (28)

The total bulk strain energy can be obtained by integrating the
strain energy density over the entire volume. The bulk strain energy
per unit length of the wire can be obtained as follows:

Ebulk = 2


∫ R

0

e(r)rdr (29)

Ebulk = 2

∫ R

0

[
1

2E (�2
r + �2

�
+ �2

z ) − 

E (�r�� + ���z + �z�r)

]
rdr

In dimensionless form:

�bulk = Ebulk


R2E((˝/3) (CR − C0)/(1 − 
))2

=
∫ 1

0

[(�2
r + �2

� + �2
z ) − 2
(�r�� + ���z + �z�r)]xdx (30)

Along with bulk strain energy, surface strain energy is also stored in
the electrode. To derive an expression for surface strain energy den-
sity, we consider a cylinder of original diameter R that is stretched
to a new radius R + �R (cf. Fig. 9). The surface stress has two parts
(see Eq. (3)). The contribution to the total surface energy as a result
2
h(R + �R)�0 − 2
hR�0 = 2
h�R�0 = 2
hR
�R

R
�0

= 2
hRε��0 (31)

ontributions to strain energy.
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ig. 10. Bulk strain energy, surface strain energy, total strain energy with time for
5-nm electrode subject to the generalized plane strain condition.

he contribution of the surface tension �0 to the surface strain
nergy density is, therefore,

2
h(R + �R)�0 − 2
Rh�0

2
Rh
= 2
h�R�0

2
Rh
= ε��0 (32)

e now consider the contribution of Ksε� to the surface-strain
nergy density. With the assistance of Fig. 9, we note that a force
alance yields:

�surface − �0)h = Ksε�h (33)

he work is the shaded area in Fig. 9 and is given by

1
2

(�surface − �0)hdRd� = 1
2

Ksε�hdRd� (34)

he work per unit area is, therefore, given by

1/2(�surface − �0)hdRd�

hdRd�
= 1/2Ksε�hdRd�

hdRd�
= 1

2
Ksε� (35)

hus total surface strain energy can be written as,
otal surface strain energy per unit length = 2
R
(

�0ε0 + 1
2

Ksε2
�

)
(36)

ig. 11. Total strain energy variation with time for a 5-nm electrode. All the three
oading conditions are taken investigated, and it is clear that the total strain energy
tored varies with the axial loading condition.
Sources 195 (2010) 5081–5088 5087

To compare with bulk strain energy, this surface strain energy is
normalized with the same quantity:

∏
surface

= 2
R(�0ε0 + (1/2)Ksε2
�
)


R2E((˝/3) (CR − C0)/(1 − 
))2

= 2(�0ε0 + (1/2)Ksε2
�
)

RE((˝/3) ((CR − C0)/(1 − 
)))2
(37)

Thus total strain energy stored in the electrode due to volumet-
ric expansion is addition of the bulk and surface strain energy.
Fig. 10 shows the dimensionless bulk strain energy, surface strain
energy, and total strain energy stored in 5 nm cylindrical electrode
due to lithium intercalation in generalized plane strain condition.
We can see that surface strain energy has a considerable effect
on the total strain energy. In addition, it can be inferred that the
surface strain energy has a comparable magnitude to the bulk
strain energy for the 5 nm electrode in all the three cases. This
confirms the fact that for representative parameters values and
nanoscale electrode dimensions, the surface effects are consider-
ably strong and can mitigate deleterious efforts of DISs in terms of
fracture propagation; hence, from a fracture perspective, nanoscale
electrodes can be expected to provide higher cycle life than elec-
trode constructed with large particles. Experiments with nanowire
electrodes support this. For example, Chan et al. [1], showed that
silicon nanowires can accommodate large strain without pulver-
ization. Nano-wired structured electrodes of different material
like Si, Sn, TiO2 have been experimented. These experiments also
confirm better behavior of nanowire electrodes than bulk elec-
trodes [30,4,31–36]. These results also depend upon the surface
and material properties of the electrode material [37], and we
have not considered potential deleterious chemical reactions that
are enhanced by increased electrode surface area, such as solvent
reduction on carbon negatives [38]. Using this mathematical model,
we can select the best possible material for the electrode, in terms
of resistance to crack propagation, by comparing this total energy
calculated with the surface energy for cracking. Thus at nanoscale,
not only bulk strain energy but surface strain energy should
be considered for predicting the initiation and propagation of
fracture.

Fig. 11 shows that variation of total strain energy in all the axial
loading conditions. The difference in the nature of strain energy
profiles in all the three cases is due to the different nature of axial
stress. From Fig. 11 we can see that, in case of the plane stress and
generalized plane strain condition, strain energy increases initially,
reaches a peak value, and then decreases. On the other hand, in case
of the plane strain condition, energy increases initially and then a
reaches a steady maximum value. The valley seen in the plane strain
curve is consistent with the radial and tangential stress maxima.
The increase in total energy afterwards is related to the continuous
increase in magnitude of axial stress. The electrode subjected to the
plane stress condition exhibits less stored strain energy and is thus
less prone to cracking as compared to other two cases.

4. Conclusions

1. There can be a significant decrease in the diffusion-induced
stress due to surface effects. Furthermore, we find in some
cases that the tensile stress is converted to compressive stress,
which will inhibit crack formation and in turn reduce mechani-
cal degradation. The results clearly indicate that below a certain

wire diameter, the surface effect plays an important role.

2. The importance of the surface strain energy contribution to the
total strain energy is established. This leads to a conclusion that
for nanostructured materials, the fracture energy should be com-
pared with a total strain energy that includes both bulk and
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surface strain energy. Surface strain energy analyses have not
been incorporated in previous studies.

. The importance of the strain or stress boundary conditions along
the axial direction of the nanowire electrodes is examined (i.e.,
plane stress versus plane strain).

. A mathematical tool is developed for the analysis of stress,
strain, and strain energy in cylindrical nanostructured elec-
trodes, which can be employed for materials with known
properties. This model can be used to optimize the cylindrical
electrode size depending upon the properties to maximize the
battery life. It may also be used as a tool for battery life prediction.

ppendix A. Supplementary data

Supplementary data associated with this article can be found, in
he online version, at doi:10.1016/j.jpowsour.2010.02.021.
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